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Abstract. Dynamic optimisation problems are difficult to solve because they 
involve variables that change over time. In this paper, we present a new Hooke-
Jeeves based Memetic Algorithm (HJMA) for dynamic function optimisation, 
and use the Moving Peaks (MP) problem as a test bed for experimentation. The 
results show that HJMA outperforms all previously published approaches on 
the three standardised benchmark scenarios of the MP problem. Some 
observations on the behaviour of the algorithm suggest that the original Hooke-
Jeeves algorithm is surprisingly similar to the simple local search employed for 
this task in previous work. 
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1   Introduction 

One of the fundamental issues that makes optimisation problems difficult to solve is 
the dynamically changing fitness landscapes [1]. In problems with dynamic fitness 
landscapes, the task of an optimisation algorithm is normally to provide candidate 
solutions with momentarily optimal objective values for each point in time. 

The Moving Peaks (MP) problem is a good example of this kind of problem. It 
consists of multidimensional landscape with a definable number of peaks, where the 
height, the width and the position of each peak are altered slightly every time a 
change in the environment occurs. Created by Branke [2] as a benchmark for dynamic 
problem solvers, the MP problem has been used by many for the testing of algorithms 
for dynamic function optimisation. 

In previous work [3], an algorithm called Multi-phase Multi-individual Extremal 
Optimisation (MMEO) was designed. MMEO exhibits great simplicity, but it works 
extremely well for the MP problem. Thorough analysis [4] has shown that the success 
story of MMEO is largely due to the local search component in it, and this has 
motivated us in studying the Hooke-Jeeves (HJ) algorithm, a very simple local search 
that was proposed by Hooke and Jeeves over 40 years ago [5]. 



In this paper, we present a new Hooke-Jeeves based Memetic Algorithm (HJMA) 
for solving the MP problem. HJMA is a hybridisation of HJ pattern search and 
Extremal Optimisation (EO), an optimisation heuristic that was first introduced by 
Boettcher and Percus [6] in 1999. Based on a very simple principle of mutating a 
single solution according to a power-law distribution, EO was designed to exclude 
bad solutions rather than finding good solutions. In other words, EO was not intended 
to show any convergence behaviour. This characteristic seemed to make EO a very 
promising choice for dynamic implementations – as no convergence exists, EO is 
expected to automatically adapt the current working solution according to the 
feedback received from the objective function. If the objective function returns fitness 
values that reflect the current search space, the algorithm is expected to be able to 
adapt to changes regardless of the severity or the frequency of the changes. However, 
experimental studies [4] revealed that EO alone does not work well for the MP 
problem, as far as the solution quality is concerned. The need to check for duplicates 
during the local search phase has an unexpectedly large impact on the solution 
quality. As such, this study reports on the hybridisation of EO with HJ. 

The rest of this paper is organised as follows. Section 2 introduces the background 
of the MP problem by describing some of the existing solution methods. Following 
which, section 3 discusses the HJMA in detail. We then present our experimental 
results in section 4. Finally, section 5 concludes our studies and highlights some 
potential future work. 

2   Background 

The MP problem can be formally defined with the following function: 
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. It is necessary to note that the location, 
width, height, and movement of the peaks are all free parameters. For the purposes of 
performance comparison, three standardised sets of parameter settings, called 
Scenario 1, Scenario 2 and Scenario 3 respectively, are defined. Most of the 
benchmark results have been published predominantly for Scenario 2 with 10 peaks 
that move at an average distance of 1/10 of the search space in a random direction, 
mainly due to its appropriateness in terms of difficulty and solvability. 

Many solutions for the MP problem have been presented since its inception, and 
one of the pioneering solutions can be found in the work of its creator, Branke, based 
on a genetic algorithm (GA) [7]. In his seminal work, Branke used a memory-based 
multi-population variation of a GA to store and retrieve individuals when a change 
occurs. However, he found that the approach is less useful for more drastic changes to 
the landscape. For this reason, he collaborated with others to develop the self-
organising scouts algorithm [8]. This extended GA approach is based on a forking 
mechanism which starts with a single population, and then dividing off 



subpopulations with a designated search area and size. Comparing to the standard 
GA, it shows a much better performance. More results of the self-organising scouts 
approach were subsequently published by Branke and Schmeck in [9], where they 
also introduced the offline error1 as a standard metric for performance measure. 

Other related works that have applied GA to the MP problem can be found in [10], 
[11], [12], [13], [14] and [15]. 

Apart from GA, particle swarm optimisation (PSO) is another popular method that 
has been used extensively in dynamic optimisation domain. Blackwell [16], who 
introduced charged particles (hence CPSO) that repel each other and circle around 
neutral particles of the swarm for better convergence behaviour in dynamic 
environments, was among the first to study PSO for the MP problem. Afterwards, 
Blackwell and Branke [17] applied a multi-population version of the same approach 
as multi-CPSO to the same problem. They also introduced multi-Quantum Swarm 
Optimisation (multi-QSO), a variation whose charged particles move randomly within 
a cloud of fixed radius centred around the swarm attractor. All these approaches 
perform well on the MP problem. 

Other PSO-based studies include Parrott and Li [18] who adapted the speciation 
technique from GA to PSO, Janson and Middendorf [19] who proposed to employ a 
tree structure where each particle uses the best location found by the individual 
immediately above it in the tree structure in addition to its own best find, as well as 
Wang et al. [20] who used Branke’s [7] idea of employing 3 populations originally for 
GA to PSO. However, the best result by PSO comes from Blackwell and Branke [21] 
who added anti-convergence to the exclusion and quantum/charged particle features 
they first conceived in [16] and [17] respectively. In [21], Blackwell and Branke 
reported an offline error of 1.72 from solving Scenario 2. 

There are also other types of solutions for the MP problem, such as the differential 
evolution (DE) [22], the stochastic diffusion search (SDS) [23] inspired by neural 
networks, and the B-cell algorithm (BCA) [24]. Among these, the DE approach by 
Mendes and Mohais [22] produced almost equal quality as Blackwell and Branke’s 
PSO [21], with an offline error of 1.75 from solving the same settings. 

The good performances of Blackwell and Branke’s PSO and Mendes and Mohais’ 
DE have encouraged Lung and Dumitrescu [25] to develop a hybridised algorithm 
that combines PSO and Crowding DE, called Collaborative Evolutionary-Swarm 
Optimisation (CESO), in which equal populations of both methods collaborate. Their 
offline error of 1.38 on Scenario 2 with 10 peaks surpasses those of Blackwell and 
Branke’s as well as Mendes and Mohais’. 

While all these approaches are impressive, the best solution in the literature comes 
in the very simple MMEO algorithm by Moser and Hendtlass [3]. MMEO is a multi-
phase multi-individual version of EO. As has been established [4], a large proportion 
of the quality of its hitherto unsurpassed results is contributed by its local search 
component, which is rather straightforward and deterministic. It outperforms all 
available approaches to date with an offline error of 0.66 on Scenario 2. 

                                                           
1 At each evaluation, the difference between the maximum height of the landscape and the best-

known solution to date is recorded. It is then averaged by the number of evaluations (note 
that this measure has some vulnerabilities: it is sensitive to the overall height of the 
landscape, the number of peaks, and the number of evaluations before change). 



In spite of the outstanding results, the local search of MMEO still carries redundant 
steps which cause unnecessary function evaluations. Furthermore, the step lengths 
used in [3] were chosen intuitively without careful consideration. As such, we believe 
that there is still room for improvements. In this study, we intend to explore the 
potential of HJ pattern search, and examine how the abovementioned issues could be 
overcome through the development of HJMA. 

3   A Novel Hybrid Approach 

In this section, we present our novel HJMA approach. The basic EO algorithm is used 
as the basis for performing the global search, while HJ will be incorporated during the 
local search process. 

3.1   Global Search 

This task is achieved by an adaptation of the EO algorithm. Unlike other population-
based approaches, EO works to improve only a single solution using mutation. This 
solution consists of multiple components which are assigned individual fitness values. 
Based on the Bak-Sneppen model [26] of self-organised criticality (SOC), EO 
eliminates the worst component by exchanging it for another element at each 
iteration. 

The initial solution is always created randomly. Variations are made to this initial 
solution using a “stepwise” sampling scheme that changes each of the dimensional 
variables at a time to produce a set of candidates. The sampling scheme produces a 
predefined number of equally distanced candidates in every dimension (see [27] for 
details). These candidate solutions are then ordered according to fitness. 

This provides a rank k  (where 1 is the worst) for each solution. The solution to be 
adopted can then be chosen with a probability of τ−k  where the only free parameter 
τ , usually a value between 1.1 and 3.0, is set to infinity. This setting eliminates the 
possibility for uphill moves which are often beneficial when EO is used as a 
standalone algorithm. In combination with a local search, the use of uphill moves has 
proved to be less desirable. 

The algorithm then adopts one of the candidates as the next solution and proceeds 
to the local search phase. 

3.2   Local Search 

After the global search phase, the local search process takes place using the HJ pattern 
search algorithm. As described in the original paper [5], HJ starts with an exploratory 
move in which all dimensional variables in turn are changed by a predefined step. As 
improvements are equally likely in both directions along the dimensional axes, this 
takes at least twice as many function evaluations as there are dimensions, at most 
equally many. The pattern move then repeats all changes that were found to be 



successful in the exploratory move and uses a single function evaluation to evaluate 
the effect of the combined change. 

The implementation of HJ algorithm is formalised as follows: 
 

Hooke-Jeeves Pattern Search Algorithm 

1. Obtain initial base point tx . Determine set of step lengths. 

2. Move the base point along every one of the d dimensional axes at a time and evaluate the result. 
Adopt each new point if improvement on the previous point. This takes at least d, at most 2d 
evaluations. If any of the moves was successful, go to 3. If none was successful, go to 4. 

3. Repeat the successful moves in a combined pattern move. If the new point has a better fitness, assume 
it as the new base point. Return to 2 whichever the outcome. 

4. Adjust step length to next smaller step. If there is a smaller step, continue from 2. If not, terminate. 

 
The HJ procedure repeats until no improving change can be made in any 

dimension. The step size is reduced and the procedure repeated until there are no 
more step sizes. 

For our experiments, the use of exponential decline in step sizes has proved most 
successful. 

 
j
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The sequence described by equation (2) was used for the experiments with HJMA. 

The initial value 
0

s  has to be determined on the basis of knowledge about the search 
space, and was set to {8, 9, 10, 11, 12} for our experiments. The power base b was set 
to the values {0.2, 0.3, 0.5}, as none of the individual values proved consistently 
superior to the others. The results presented did not always use the same step length 
sequences. 

3.3   HJMA 

The complete HJMA algorithm differs from MMEO [3] only in the local search part. 
Unlike MMEO, HJMA uses the HJ algorithm, which is used with different step length 
sequences. Also, the HJMA local search records which direction along each 
dimensional axis was used for the last improvement and checks this direction first. 

In all other respects, the algorithms are identical. HJMA also eradicates duplicates 
after every exploratory and pattern move, and stores the solution when it cannot be 
improved further and it is not identified as a duplicate. The HJMA algorithm also 
comprises a fine-tuning phase where the best solution in memory is improved using a 
further step on the exponential sequence. The complete algorithm is outlined below: 

 
Hooke-Jeeves based Memetic Algorithm 
1. Find new solution by stepwise sampling of the space in each dimension. Evaluate solutions and rank 

by resulting fitness (quality). Choose new individual using power-law distribution. 



2. Use HJ pattern search to optimise the new solution locally. Stop if too close to other solution. Stop 
when no further improvement is possible. 

3. Store new solution if it was not removed as a duplicate in step 2. 

4. Check whether the existing individuals can be improved by further local optimisation, i.e. a change 
has occurred. 

5. Fine-tune best individual using HJ but sample closer to current position. Stop when no further 
improvement is possible. 

4   Experiments and Results 

In our experiments, we compare HJMA to MMEO [3] and CESO [25] from the 
literature. Additionally, we also compare it with an improved MMEO where some 
redundancies in the step lengths have been removed. As in the HJ implementation, the 
local search in the new MMEO also records the direction in which every dimensional 
variable is likely to improve. 

The experimental results on all three scenarios are summarised in Table I, averaged 
over 50 runs with 100 changes to each run. The corresponding standard error is 
calculated by dividing the standard deviation and the square root of the number of 
runs. 

 
Table 1. Offline error and standard error for all scenarios. 

Scenario CESO [25] MMEO [3] new MMEO HJMA 
1 - 0.10 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 
2 1.38 ± 0.02 0.66 ± 0.20 0.25 ± 0.08 0.25 ± 0.10 
3 - 3.77 ± 1.72 1.43 ± 0.54 1.57 ± 0.73 

 
From Table 1, it is obvious that HJMA clearly outperforms CESO and MMEO. It 

also shows comparable performance to the newly improved MMEO. 

4.1   Varying the number of Peaks 

The results obtained in Table 1 have used a total of 10 peaks for all the scenarios. In 
general, it is easier to find the global maximum when the number of peaks is small. 
However, it is easier to score on the offline error when the landscape is elevated 
(more peaks). To evaluate the performance of HJMA when different number of peaks 
is present, we test it with experiments on 1, 10, 20, 30, 40, 50 and 100 peaks for 
comparison. Experimental results obtained for different number of peaks are 
presented in Table 2. 

For CESO, the best result has been obtained with the one peak setup. While HJMA 
did not perform well with one peak, it obtained better results than CESO and MMEO 
in all other instances. The improved MMEO shares similar results with HJMA. The 
reasons behind the similarity in results as well as the exceptionally poor performance 
in the scenario with the single peak will be the subject of further studies. 

 



Table 2. Offline error and standard error for varying number of peaks. 
No. peaks CESO [25] MMEO [3] new MMEO HJMA 

1 1.04 ± 0.00 11.3 ± 3.56  7.47 ± 1.98 7.08 ± 1.99 
10 1.38 ± 0.02 0.66 ± 0.20 0.25 ± 0.08 0.25 ± 0.10 
20 1.72 ± 0.02 0.90 ± 0.16 0.40 ± 0.11 0.39 ± 0.10 
30 1.24 ± 0.01 1.06 ± 0.14 0.49 ± 0.10 0.49 ± 0.09 
40 1.30 ± 0.02 1.18 ± 0.16 0.56 ± 0.09 0.56 ± 0.09 
50 1.45 ± 0.01 1.23 ± 0.11 0.59 ± 0.10 0.58 ± 0.09 

100 1.28 ± 0.02 1.38 ± 0.09 0.66 ± 0.07 0.66 ± 0.07 

4.2   Varying the Dimensionality 

The dimensionality, tantamount to the complexity of the problem, is expected to have 
a large impact on the performances of different algorithms. The standard scenarios 
used to obtain the results in Table 1 have five dimensions. In order to investigate the 
effect of varying dimensionality in the search space, we test out HJMA and other 
algorithms on experiments with different dimensionality values. Numerical results on 
10, 50 and 100 dimensions are presented in Table 3. 

 
Table 3. Offline error and standard error for varying dimensionality. 

Dimensions CESO [25] MMEO [3] new MMEO HJMA 
10 2.51 ± 0.04 2.44 ± 0.77 2.25 ± 0.85 2.17 ± 0.80 
50 6.81 ± 0.07 206.3 ± 35.7 6.22 ± 1.6 5.79 ± 1.4 

100 24.60 ± 0.25 480.5 ± 70.1 17.8 ± 6.9 16.5 ± 5.4 
 
As can be observed from Table 3, CESO reported an average offline error of 2.51 

in the 10 dimensions search space. The performance of CESO deteriorated drastically 
when the dimensionality increases, with average offline errors of 6.81 and 24.60 for 
50 dimensions and 100 dimensions respectively. On the other hand, HJMA is able to 
maintain a fairly competitive performance even when the dimensionality is increased 
to 100. It is also the first time where HJMA has shown distinguishably better results 
than the improved MMEO. 

5   Conclusion 

In this paper, we have proposed a new hybrid algorithm – HJMA – for solving 
dynamic function optimisation problems. HJMA significantly outperformed the best 
algorithms for the MP problem currently available in the literature. It has also 
maintained its outstanding performance in challenging environments, i.e. search 
spaces with different number of peaks and different dimensionality. The HJ pattern 
search has been particularly robust compared to other local search algorithms when 
the dimensionality is high. 

In general, there is still room for HJMA to improve, considering the fact that it has 
been devised within a short period of time. Future work will investigate the portability 
of HJ with other types of metaheuristics. 
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